3D bosonization code[1]
Description
A mapping that maps a 3D lattice quadratic Hamiltonian of Majorana modes into a lattice of qubits which realize a \(\mathbb{Z}_2\) gauge theory with a particular Gauss law.
Parent
Cousins
- 3D fermionic surface code — The 3D fermionic surface code is the result of applying the 3D bosonization mapping to a trivial fermonic theory [2]. Twist defects in the 3D fermionic surface code take the form of Kitaev chains after the mapping [2,3].
- Three-fermion (3F) Walker-Wang model code — The 3F Walker-Wang QCA encoder [4,5] can be simplified using bosonization [6].
References
- [1]
- Y.-A. Chen and A. Kapustin, “Bosonization in three spatial dimensions and a 2-form gauge theory”, Physical Review B 100, (2019) arXiv:1807.07081 DOI
- [2]
- M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn, and G. Zhu, “Codimension-2 defects and higher symmetries in (3+1)D topological phases”, SciPost Physics 14, (2023) arXiv:2208.07367 DOI
- [3]
- P. Webster and S. D. Bartlett, “Fault-tolerant quantum gates with defects in topological stabilizer codes”, Physical Review A 102, (2020) arXiv:1906.01045 DOI
- [4]
- J. Haah, L. Fidkowski, and M. B. Hastings, “Nontrivial Quantum Cellular Automata in Higher Dimensions”, Communications in Mathematical Physics 398, 469 (2022) arXiv:1812.01625 DOI
- [5]
- J. Haah, “Topological phases of unitary dynamics: Classification in Clifford category”, (2024) arXiv:2205.09141
- [6]
- L. Fidkowski and M. B. Hastings, “Pumping Chirality in Three Dimensions”, (2024) arXiv:2309.15903
Page edit log
- Victor V. Albert (2024-03-26) — most recent
Cite as:
“3D bosonization code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/3d_bosonization