Here is a list of good QLDPC and related codes.
Code | Description |
---|---|
Dinur-Hsieh-Lin-Vidick (DHLV) code | A family of asymptotically good QLDPC codes which are related to expander LP codes in that the roles of the check operators and physical qubits are exchanged. |
Expander LP code | Family of \(G\)-lifted product codes constructed using two random classical Tanner codes defined on expander graphs [1]. For certain parameters, this construction yields the first asymptotically good QLDPC codes. Classical codes resulting from this construction are one of the first two families of \(c^3\)-LTCs. |
Lattice stabilizer code | A geometrically local stabilizer code with sites organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\). On an infinite lattice, its stabilizer group is generated by few-site Pauli-type operators and their translations, in which case the code is called translationally invariant stabilizer code. Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional versions. Lattice defects and boundaries between different codes can also be introduced. |
Lattice subsystem code | A geometrically local qubit, modular-qudit, or Galois-qudit subsystem stabilizer code with qudits organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\). On an infinite lattice, its gauge and stabilizer groups are generated by few-site Pauli operators and their translations, in which case the code is called translationally invariant subsystem code. Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional versions, in which case the stabilizer group may no longer be generated by few-site Pauli operators. Lattice defects and boundaries between different codes can also be introduced. Lattice subsystem stabilizer code Hamiltonians described by an Abelian anyon theory do not always realize the corresponding anyonic topological order in their ground-state subspace and may exhibit a rich phase diagram. |
Layer code | Member of a family of 3D lattice CSS codes with stabilizer generator weights \(\leq 6\) that are obtained by coupling layers of 2D surface code according to the Tanner graph of a QLDPC code. Geometric locality is maintained because, instead of being concatenated, each pair of parallel surface-code squares are fused (or quasi-concatenated) with perpendicular surface-code squares via lattice surgery. |
Lossless expander balanced-product code | QLDPC code constructed by taking the balanced product of lossless expander graphs. Using one part of a quantum-code chain complex constructed with one-sided loss expanders [2] yields a \(c^3\)-LTC [3]. Using two-sided expanders, which are only conjectured to exist, yields an asymptotically good QLDPC code family [4]. |
Quantum Tanner code | Member of a family of QLDPC codes based on two compatible classical Tanner codes defined on a two-dimensional Cayley complex, a complex constructed from Cayley graphs of groups. For certain choices of codes and complex, the resulting codes have asymptotically good parameters. This construction has been generalized to Schreier graphs [5]. |
Quantum maximum-distance-separable (MDS) code | A type of block quantum code whose parameters satisfy the quantum Singleton bound with equality. |
References
- [1]
- S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications”, Bulletin of the American Mathematical Society 43, 439 (2006) DOI
- [2]
- M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness conductors and constant-degree lossless expanders”, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing 659 (2002) DOI
- [3]
- T.-C. Lin and M.-H. Hsieh, “\(c^3\)-Locally Testable Codes from Lossless Expanders”, (2022) arXiv:2201.11369
- [4]
- T.-C. Lin and M.-H. Hsieh, “Good quantum LDPC codes with linear time decoder from lossless expanders”, (2022) arXiv:2203.03581
- [5]
- O. Å. Mostad, E. Rosnes, and H.-Y. Lin, “Generalizing Quantum Tanner Codes”, (2024) arXiv:2405.07980