Here is a list of good QLDPC and related codes.
Code | Description |
---|---|
Dinur-Hsieh-Lin-Vidick (DHLV) code | A family of asymptotically good QLDPC codes which are related to expander LP codes in that the roles of the check operators and physical qubits are exchanged. |
Expander LP code | Family of \(G\)-lifted product codes constructed using two random classical Tanner codes defined on expander graphs [1]. For certain parameters, this construction yields the first asymptotically good QLDPC codes. Classical codes resulting from this construction are one of the first two families of \(c^3\)-LTCs. |
Lattice stabilizer code | A geometrically local stabilizer code with sites organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\). On an infinite lattice, its stabilizer group is generated by few-site Pauli-type operators and their translations, in which case the code is called translationally invariant stabilizer code. Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional versions. Lattice defects and boundaries between different codes can also be introduced. |
Layer code | Member of a family of 3D lattice CSS codes with stabilizer generator weights \(\leq 6\) that are obtained by coupling layers of 2D surface code according to the Tanner graph of a QLDPC code. Geometric locality is maintained because, instead of being concatenated, each pair of parallel surface-code squares are fused (or quasi-concatenated) with perpendicular surface-code squares via lattice surgery. |
Lossless expander balanced-product code | QLDPC code constructed by taking the balanced product of lossless expander graphs. Using one part of a quantum-code chain complex constructed with one-sided loss expanders [2] yields a \(c^3\)-LTC [3]. Using two-sided expanders, which are only conjectured to exist, yields an asymptotically good QLDPC code family [4]. |
Quantum Tanner code | Member of a family of QLDPC codes based on two compatible classical Tanner codes defined on a two-dimensional Cayley complex, a complex constructed from Cayley graphs of groups. For certain choices of codes and complex, the resulting codes have asymptotically good parameters. This construction has been generalized to Schreier graphs [5]. |
Quantum maximum-distance-separable (MDS) code | A type of block quantum code whose parameters satisfy the quantum Singleton bound with equality. |
References
- [1]
- S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications”, Bulletin of the American Mathematical Society 43, 439 (2006) DOI
- [2]
- M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness conductors and constant-degree lossless expanders”, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing 659 (2002) DOI
- [3]
- T.-C. Lin and M.-H. Hsieh, “\(c^3\)-Locally Testable Codes from Lossless Expanders”, (2022) arXiv:2201.11369
- [4]
- T.-C. Lin and M.-H. Hsieh, “Good quantum LDPC codes with linear time decoder from lossless expanders”, (2022) arXiv:2203.03581
- [5]
- O. Å. Mostad, E. Rosnes, and H.-Y. Lin, “Generalizing Quantum Tanner Codes”, (2024) arXiv:2405.07980