Walker-Wang model code[1] 

Description

A 3D topological code defined by a unitary braided fusion category \( \mathcal{C} \) (also known as a unitary premodular category). The code is defined on a cubic lattice that is resolved to be trivalent, with a qudit of dimension \( |\mathcal{C}| \) located at each edge. The codespace is the ground-state subspace of the Walker-Wang model Hamiltonian [1] and realizes the Crane-Yetter model [24]. A single-state version of the code provides a resource state for MBQC [5].

Protection

Codespace dimensions (i.e., ground-state degeneracy) has been calculated for various boundary conditions [6].

Encoding

For modular chiral anyon theories, a unitary encoder is conjectured to not be implementable in constant depth because it is believed to be an example of a quantum cellular automaton (QCA) (i.e., causal or locality-preserving automorphism) that cannot be locally implemented [7,8]. States of modular gapped theories can be initialized in constant depth [9].

Parent

Children

  • Raussendorf-Bravyi-Harrington (RBH) cluster-state code — The Walker-Wang model code reduces to the RBH cluster-state code when the input category \(\mathcal{C}\) is that of the surface code [5; Sec. V.A].
  • 3D fermionic surface code — The 3D fermionic surface code is a Walker-Wang model code with premodular input category \(\mathcal{C} = \text{sVec}\) consisting of a trivial anyon and a fermion.
  • Three-fermion (3F) Walker-Wang model code — The Walker-Wang model code reduces to the 3F model code when the input category \(\mathcal{C}=3F\) [5]. When treated as ground states of the code Hamiltonian, 3F Walker-Wang model code states realize a 3D time-reversal SPT order [11]. The anyons at the boundary of the lattice are described by the 3F anyon theory.
  • Chiral semion Walker-Wang model code — The Walker-Wang model code reduces to the chiral semion model code when the input category is \(\mathcal{C}=\mathbb{Z}_{2}^{(1/2)}\), or alternatively \(\mathcal{C}=\mathbb{Z}_{4}^{(1)}\) after condensing a \(\mathbb{Z}_{2}\)-transparent boson.

Cousins

  • String-net code — The Walker-Wang model is a generalization of the 3D version of the Levin-Wen model [12; Sec. 5], which realizes gauge theories coupled to bosons and fermions.
  • Two-gauge theory code — Two-gauge theory codes for particular two-groups are dual to certain Walker-Wang models based on Abelian groups [13; Sec. V][14; Sec. 7].
  • Abelian topological code — Any Abelian anyon theory \(A\) can be realized at one of the surfaces of a 3D Walker-Wang model whose underlying theory is an Abelian TQD containing \(A\) as a subtheory [15,16][17; Appx. H].

References

[1]
K. Walker and Z. Wang, “(3+1)-TQFTs and Topological Insulators”, (2011) arXiv:1104.2632
[2]
L. Crane and D. N. Yetter, “A categorical construction of 4D TQFTs”, (1993) arXiv:hep-th/9301062
[3]
L. Crane, L. H. Kauffman, and D. N. Yetter, “Evaluating the Crane-Yetter Invariant”, (1993) arXiv:hep-th/9309063
[4]
L. Crane, L. H. Kauffman, and D. N. Yetter, “State-Sum Invariants of 4-Manifolds I”, (1994) arXiv:hep-th/9409167
[5]
S. Roberts and D. J. Williamson, “3-Fermion Topological Quantum Computation”, PRX Quantum 5, (2024) arXiv:2011.04693 DOI
[6]
C. W. von Keyserlingk, F. J. Burnell, and S. H. Simon, “Three-dimensional topological lattice models with surface anyons”, Physical Review B 87, (2013) arXiv:1208.5128 DOI
[7]
J. Haah, L. Fidkowski, and M. B. Hastings, “Nontrivial Quantum Cellular Automata in Higher Dimensions”, Communications in Mathematical Physics 398, 469 (2022) arXiv:1812.01625 DOI
[8]
J. Haah, “Topological phases of unitary dynamics: Classification in Clifford category”, (2024) arXiv:2205.09141
[9]
A. Bauer, “Disentangling modular Walker-Wang models via fermionic invertible boundaries”, Physical Review B 107, (2023) arXiv:2208.03397 DOI
[10]
D. J. Williamson and Z. Wang, “Hamiltonian models for topological phases of matter in three spatial dimensions”, Annals of Physics 377, 311 (2017) arXiv:1606.07144 DOI
[11]
F. J. Burnell, X. Chen, L. Fidkowski, and A. Vishwanath, “Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order”, Physical Review B 90, (2014) arXiv:1302.7072 DOI
[12]
M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for topological phases”, Physical Review B 71, (2005) arXiv:cond-mat/0404617 DOI
[13]
A. Bullivant, M. Calçada, Z. Kádár, P. Martin, and J. F. Martins, “Topological phases from higher gauge symmetry in3+1dimensions”, Physical Review B 95, (2017) arXiv:1606.06639 DOI
[14]
C. Delcamp and A. Tiwari, “On 2-form gauge models of topological phases”, Journal of High Energy Physics 2019, (2019) arXiv:1901.02249 DOI
[15]
J. Haah, “Clifford quantum cellular automata: Trivial group in 2D and Witt group in 3D”, Journal of Mathematical Physics 62, (2021) arXiv:1907.02075 DOI
[16]
W. Shirley, Y.-A. Chen, A. Dua, T. D. Ellison, N. Tantivasadakarn, and D. J. Williamson, “Three-Dimensional Quantum Cellular Automata from Chiral Semion Surface Topological Order and beyond”, PRX Quantum 3, (2022) arXiv:2202.05442 DOI
[17]
T. D. Ellison, Y.-A. Chen, A. Dua, W. Shirley, N. Tantivasadakarn, and D. J. Williamson, “Pauli topological subsystem codes from Abelian anyon theories”, Quantum 7, 1137 (2023) arXiv:2211.03798 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: walker_wang

Cite as:
“Walker-Wang model code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/walker_wang
BibTeX:
@incollection{eczoo_walker_wang, title={Walker-Wang model code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/walker_wang} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/walker_wang

Cite as:

“Walker-Wang model code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/walker_wang

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/categories/string_net/walker_wang.yml.