Description
Code obtained from a cluster state on a tree graph (e.g., a star graph [2,3]) that has been proposed in the context of quantum repeater and MBQC architectures.Protection
Some tree cluster-state codes have shown good performance over the depolarizing channel [6].Gates
Cluster states constructed from star clusters can be used to perform universal MBQC with probabilistic two-qubit gates [3].Member of code lists
Primary Hierarchy
References
- [1]
- M. Varnava, D. E. Browne, and T. Rudolph, “Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction”, Physical Review Letters 97, (2006) arXiv:quant-ph/0507036 DOI
- [2]
- K. Fujii and K. Yamamoto, “Topological one-way quantum computation on verified logical cluster states”, Physical Review A 82, (2010) arXiv:1008.2048 DOI
- [3]
- K. Fujii and Y. Tokunaga, “Fault-Tolerant Topological One-Way Quantum Computation with Probabilistic Two-Qubit Gates”, Physical Review Letters 105, (2010) arXiv:1008.3752 DOI
- [4]
- K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters”, Nature Communications 6, (2015) arXiv:1309.7207 DOI
- [5]
- M. Pant, H. Krovi, D. Englund, and S. Guha, “Rate-distance tradeoff and resource costs for all-optical quantum repeaters”, Physical Review A 95, (2017) arXiv:1603.01353 DOI
- [6]
- J. Bausch and F. Leditzky, “Error Thresholds for Arbitrary Pauli Noise”, SIAM Journal on Computing 50, 1410 (2021) arXiv:1910.00471 DOI
Page edit log
- Victor V. Albert (2024-01-08) — most recent
Cite as:
“Tree cluster-state code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/tree_cluster