Rank-modulation code[1,2] 

Description

A family of codes in permutations derived from \(q\)-ary linear codes, such as Lee-metric codes, RS codes [2], quadratic residue codes, and most binary codes.

Rate

Rank modulation codes with code distance of order \(d=\Theta(n^{1+\epsilon})\) for \(\epsilon\in[0,1]\) achieve a rate of \(1-\epsilon\) [3].

Realizations

Electronic devices where charges can either increase in an individual cell or decrease in a block of adjacent cells, e.g., flash memories [4].

Parent

Cousins

  • Gray code — The rank-modulation Gray code is an extension of the original binary Gray code to a code on the permutation group [4].
  • Linear \(q\)-ary code — Almost all linear \(q\)-ary codes can be converted to rank-modulation codes [2].

References

[1]
Anxiao Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank modulation”, 2008 IEEE International Symposium on Information Theory 1736 (2008) DOI
[2]
A. Mazumdar, A. Barg, and G. Zémor, “Constructions of Rank Modulation Codes”, (2011) arXiv:1110.2557
[3]
A. Barg and A. Mazumdar, “Codes in permutations and error correction for rank modulation”, 2010 IEEE International Symposium on Information Theory 854 (2010) DOI
[4]
Anxiao Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank Modulation for Flash Memories”, IEEE Transactions on Information Theory 55, 2659 (2009) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: rank_modulation

Cite as:
“Rank-modulation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rank_modulation
BibTeX:
@incollection{eczoo_rank_modulation, title={Rank-modulation code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/rank_modulation} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/rank_modulation

Cite as:

“Rank-modulation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rank_modulation

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/groups/permutation/rank_modulation.yml.