[Jump to code hierarchy]

Hyperbolic sphere packing[1,2]

Description

Encodes states (codewords) into coordinates in the hyperbolic plane.

Protection

Designed to communicate information over channels for which a Lorentzian metric is appropriate [3]. Linear programming (LP) bounds exist for hyperbolic surfaces [48].

Cousins

Member of code lists

Primary Hierarchy

Parents
Hyperbolic space in \(D\) dimensions is a symmetric space \(G/H\) for \(G = SO(D,1)\) the proper Lorentz group and \(H = O(D)\). The hyperbolic plane is the case \(D=2\).
Hyperbolic sphere packing

References

[1]
E. B. Da Silva, R. Palazzo, and S. R. Costa, “Improving the performance of asymmetric M-PAM signal constellations in Euclidean space by embedding them in hyperbolic space”, 1998 Information Theory Workshop (Cat. No.98EX131) 98 DOI
[2]
E. B. da Silva, M. Firer, S. R. Costa, and R. Palazzo Jr., “Signal constellations in the hyperbolic plane: A proposal for new communication systems”, Journal of the Franklin Institute 343, 69 (2006) DOI
[3]
M. E. Gertsenshtein and V. B. Vasil’ev, “Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane”, Theory of Probability & Its Applications 4, 391 (1959) DOI
[4]
L. Bowen, “Periodicity and Circle Packings of the Hyperbolic Plane”, Geometriae Dedicata 102, 213 (2003) DOI
[5]
H. Cohn and Y. Zhao, “Sphere packing bounds via spherical codes”, Duke Mathematical Journal 163, (2014) arXiv:1212.5966 DOI
[6]
M. F. Bourque and B. Petri, “Linear programming bounds for hyperbolic surfaces”, (2023) arXiv:2302.02540
[7]
M. Wackenhuth, “Bounds on hyperbolic sphere packings: On a conjecture by Cohn and Zhao”, (2024) arXiv:2411.07139
[8]
M. Wackenhuth, “Linear programming bounds in homogeneous spaces, I: Optimal packing density”, (2025) arXiv:2505.23572
[9]
Silva, E. B., and R. Palazzo Jr. “M-PSK signal constellations in hyperbolic space achieving better performance than the M-PSK signal constellations in Euclidean space.” 1999 IEEE Information Theory Workshop, Metsovo, Greece. 1999.
[10]
Silva, E. B., R. Palazzo Jr, and M. Firer. “Performance analysis of QAM-like constellations in hyperbolic space.” 2000 International Symposium on Information Theory and its Applications, Honolulu, USA. 2000.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hyperbolic

Cite as:
“Hyperbolic sphere packing”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hyperbolic
BibTeX:
@incollection{eczoo_hyperbolic, title={Hyperbolic sphere packing}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hyperbolic} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hyperbolic

Cite as:

“Hyperbolic sphere packing”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hyperbolic

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/homogeneous/hyperbolic.yml.