Description
Classical code defined on a two-dimensional lattice and derived from a geometrically local stabilizer code, such as the surface code or color code.Cousin
- Abelian topological code— Some topological orders have classical analogues that can be used for error correction.
Member of code lists
Primary Hierarchy
Parents
Classical topological code
Children
References
- [1]
- H. Bombin and M. A. Martin-Delgado, “Homological error correction: Classical and quantum codes”, Journal of Mathematical Physics 48, (2007) arXiv:quant-ph/0605094 DOI
- [2]
- M.-S. Vaezi, G. Ortiz, and Z. Nussinov, “Robust topological degeneracy of classical theories”, Physical Review B 93, (2016) arXiv:1511.07867 DOI
- [3]
- D. Chandra, Z. Babar, H. V. Nguyen, D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, “Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective”, IEEE Access 6, 13729 (2018) DOI
- [4]
- B. Rayhaun and D. Williamson, “Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions”, SciPost Physics 15, (2023) arXiv:2112.12735 DOI
- [5]
- P. Gorantla, A. Prem, N. Tantivasadakarn, and D. J. Williamson, “String-Membrane-Nets from Higher-Form Gauging: An Alternate Route to \(p\)-String Condensation”, (2025) arXiv:2505.13604
Page edit log
- Victor V. Albert (2023-12-26) — most recent
Cite as:
“Classical topological code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/topological_classical