[Jump to code hierarchy]

Classical topological code[13]

Description

Classical code defined on a two-dimensional lattice and derived from a geometrically local stabilizer code, such as the surface code or color code.

Cousin

Primary Hierarchy

Parents
Classical topological code
Children
The 2D plaquette Ising model can be constructed by coupling layers of 1D \(\mathbb{Z}_2\) lattice gauge theory [4]. A field-theoretic description of the 2D plaquette Ising model can be obtained by coupling layers of 1D gauge theory [5].

References

[1]
H. Bombin and M. A. Martin-Delgado, “Homological error correction: Classical and quantum codes”, Journal of Mathematical Physics 48, (2007) arXiv:quant-ph/0605094 DOI
[2]
M.-S. Vaezi, G. Ortiz, and Z. Nussinov, “Robust topological degeneracy of classical theories”, Physical Review B 93, (2016) arXiv:1511.07867 DOI
[3]
D. Chandra, Z. Babar, H. V. Nguyen, D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, “Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective”, IEEE Access 6, 13729 (2018) DOI
[4]
B. Rayhaun and D. Williamson, “Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions”, SciPost Physics 15, (2023) arXiv:2112.12735 DOI
[5]
P. Gorantla, A. Prem, N. Tantivasadakarn, and D. J. Williamson, “String-Membrane-Nets from Higher-Form Gauging: An Alternate Route to \(p\)-String Condensation”, (2025) arXiv:2505.13604
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: topological_classical

Cite as:
“Classical topological code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/topological_classical
BibTeX:
@incollection{eczoo_topological_classical, title={Classical topological code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/topological_classical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/topological_classical

Cite as:

“Classical topological code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/topological_classical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/quantum_inspired/topological_classical.yml.