Subspace code[1]
Root code for the Galois-field Kingdom
Description
A code that is a set of subspaces of \(GF(q)^n\).
Protection
Subspace codes are quantified with respect to the subspace distance [1] or injection distance [2].
Generalizations of various bounds for ordinary \(q\)-ary codes have been developed for subspace codes; see [3].
Decoding
List decoding up to the Singleton bound [4].
Realizations
Packet-based transmission over networks [3].
Parent
Cousins
- Projective geometry code — Subspace codes are sets of subspaces of a projective space \(PG(n-1,q)\).
- Gabidulin code — Gabidulin codes can be used to construct asymptotically good subspace codes [1,5].
- Rank-metric code — Subspace and rank-metric codes are closely related [6].
- Poset code — Poset-code and subspace-code distance metric families intersect only at the Hamming metric [7].
References
- [1]
- R. Koetter and F. R. Kschischang, “Coding for Errors and Erasures in Random Network Coding”, IEEE Transactions on Information Theory 54, 3579 (2008) DOI
- [2]
- D. Silva and F. R. Kschischang, “On Metrics for Error Correction in Network Coding”, IEEE Transactions on Information Theory 55, 5479 (2009) arXiv:0805.3824 DOI
- [3]
- F. R. Kschischang, "Network Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
- [4]
- V. Guruswami and C. Xing, “List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound”, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing (2013) DOI
- [5]
- Huaxiong Wang, Chaoping Xing, and R. Safavi-Naini, “Linear authentication codes: bounds and constructions”, IEEE Transactions on Information Theory 49, 866 (2003) DOI
- [6]
- D. Silva, F. R. Kschischang, and R. Koetter, “A Rank-Metric Approach to Error Control in Random Network Coding”, IEEE Transactions on Information Theory 54, 3951 (2008) DOI
- [7]
- M. Firer, "Alternative Metrics." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2024-08-23) — most recent
Cite as:
“Subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/subspace