[Jump to code hierarchy]

Subspace code[13]

Description

A code that is a set of subspaces of \(\mathbb{F}_q^n\). Codewords are generator matrices of the subspaces in reduced-row echelon form, and distance is governed by various notions of subspace overlap.

Protection

Subspace codes are quantified with respect to the subspace distance [1] or injection distance [2].

Generalizations of various bounds for ordinary \(q\)-ary codes have been developed for subspace codes; see [4].

Decoding

List decoding up to the Singleton bound [5].

Realizations

Packet-based transmission over linear networks [1,4,6].

Notes

Reviews of subspace codes [4,7].

Cousins

  • Projective geometry code— Subspace codes are sets of subspaces of a projective space \(PG(n-1,q)\).
  • Gabidulin code— Gabidulin codes can be used to construct asymptotically good subspace codes [1,8].
  • Rank-metric code— An \(m \times n\) rank-metric codeword \(A\) can be lifted to a subspace codeword \((I | A)\) that generates an \(m\)-dimensional subspace [6][9; Def. 14.5.21].
  • Poset code— Poset-code and subspace-code distance metric families intersect only at the Hamming metric [10].

Primary Hierarchy

Parents
Subspace codes are represented by generator matrices of subspaces of \(\mathbb{F}_q^n\).
Subspace code
Children
Subspace codes of constant dimension reduce to constant-dimension codes.

References

[1]
R. Koetter and F. Kschischang, “Coding for Errors and Erasures in Random Network Coding”, (2008) arXiv:cs/0703061
[2]
D. Silva and F. R. Kschischang, “On Metrics for Error Correction in Network Coding”, IEEE Transactions on Information Theory 55, 5479 (2009) arXiv:0805.3824 DOI
[3]
M. Braun, T. Etzion, and A. Vardy, “Linearity and Complements in Projective Space”, (2011) arXiv:1103.3117
[4]
F. R. Kschischang, “Network Codes.” Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[5]
V. Guruswami and C. Xing, “List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound”, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing 843 (2013) DOI
[6]
D. Silva, F. R. Kschischang, and R. Koetter, “A Rank-Metric Approach to Error Control in Random Network Coding”, IEEE Transactions on Information Theory 54, 3951 (2008) arXiv:0711.0708 DOI
[7]
A. Khaleghi, D. Silva, and F. R. Kschischang, “Subspace Codes”, Lecture Notes in Computer Science 1 (2009) DOI
[8]
Huaxiong Wang, Chaoping Xing, and R. Safavi-Naini, “Linear authentication codes: bounds and constructions”, IEEE Transactions on Information Theory 49, 866 (2003) DOI
[9]
L. Storme, “Coding Theory and Galois Geometries.” Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[10]
M. Firer, “Alternative Metrics.” Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: subspace

Cite as:
“Subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/subspace
BibTeX:
@incollection{eczoo_subspace, title={Subspace code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/subspace} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/subspace

Cite as:

“Subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/subspace

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/matrices/subspace/subspace.yml.