[Jump to code hierarchy]

Subspace code[1]

Root code for the Galois-field Kingdom

Description

A code that is a set of subspaces of \(GF(q)^n\).

Protection

Subspace codes are quantified with respect to the subspace distance [1] or injection distance [2].

Generalizations of various bounds for ordinary \(q\)-ary codes have been developed for subspace codes; see [3].

Decoding

List decoding up to the Singleton bound [4].

Realizations

Packet-based transmission over networks [3].

Cousins

  • Projective geometry code— Subspace codes are sets of subspaces of a projective space \(PG(n-1,q)\).
  • Gabidulin code— Gabidulin codes can be used to construct asymptotically good subspace codes [1,5].
  • Rank-metric code— Subspace and rank-metric codes are closely related [6].
  • Poset code— Poset-code and subspace-code distance metric families intersect only at the Hamming metric [7].

References

[1]
R. Koetter and F. R. Kschischang, “Coding for Errors and Erasures in Random Network Coding”, IEEE Transactions on Information Theory 54, 3579 (2008) DOI
[2]
D. Silva and F. R. Kschischang, “On Metrics for Error Correction in Network Coding”, IEEE Transactions on Information Theory 55, 5479 (2009) arXiv:0805.3824 DOI
[3]
F. R. Kschischang, "Network Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[4]
V. Guruswami and C. Xing, “List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound”, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing (2013) DOI
[5]
Huaxiong Wang, Chaoping Xing, and R. Safavi-Naini, “Linear authentication codes: bounds and constructions”, IEEE Transactions on Information Theory 49, 866 (2003) DOI
[6]
D. Silva, F. R. Kschischang, and R. Koetter, “A Rank-Metric Approach to Error Control in Random Network Coding”, IEEE Transactions on Information Theory 54, 3951 (2008) DOI
[7]
M. Firer, "Alternative Metrics." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: subspace

Cite as:
“Subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/subspace
BibTeX:
@incollection{eczoo_subspace, title={Subspace code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/subspace} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/subspace

Cite as:

“Subspace code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/subspace

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/alternative_metrics/subspace.yml.