Linearized RS code[13] 

Description

A linearized version of a skew RS code, i.e., an RS code constructed by evaluating skew polynomials [1,2].

Protection

Linearized RS codes achieve the Singleton bound in the sum-rank metric [3].

Decoding

Berlekamp-Welch-type decoder [2] and its sum-rank version [4].

Realizations

Network coding [4].Code-based cryptography [5,6].

Parent

Cousins

  • Reed-Solomon (RS) code — RS codes are particular cases of linearized RS codes because the sum-rank metric generalizes the Hamming metric [3].
  • Gabidulin code — Gabidulin codes are particular cases of linearized RS codes because the sum-rank metric generalizes the rank metric [3].
  • Locally recoverable code (LRC) — Linearized RS codes can be used to construct locally recoverable codes [7].

References

[1]
D. Boucher and F. Ulmer, “Linear codes using skew polynomials with automorphisms and derivations”, Designs, Codes and Cryptography 70, 405 (2012) DOI
[2]
S. Liu, F. Manganiello, and F. R. Kschischang, “Construction and decoding of generalized skew-evaluation codes”, 2015 IEEE 14th Canadian Workshop on Information Theory (CWIT) (2015) DOI
[3]
U. Martínez-Peñas, “Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring”, (2018) arXiv:1710.03109
[4]
U. Martinez-Penas and F. R. Kschischang, “Reliable and Secure Multishot Network Coding Using Linearized Reed-Solomon Codes”, IEEE Transactions on Information Theory 65, 4785 (2019) arXiv:1805.03789 DOI
[5]
Hörmann, F., Bartz, H., & Horlemann, A. L. (2022). Security considerations for Mceliece-like cryptosystems based on linearized Reed-Solomon codes in the sum-rank metric.
[6]
F. Hörmann, H. Bartz, and A.-L. Horlemann, “Distinguishing and Recovering Generalized Linearized Reed–Solomon Codes”, Lecture Notes in Computer Science 1 (2023) arXiv:2304.00627 DOI
[7]
U. Martínez-Peñas and F. R. Kschischang, “Universal and Dynamic Locally Repairable Codes with Maximal Recoverability via Sum-Rank Codes”, (2019) arXiv:1809.11158
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: linearized_reed_solomon

Cite as:
“Linearized RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/linearized_reed_solomon
BibTeX:
@incollection{eczoo_linearized_reed_solomon, title={Linearized RS code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/linearized_reed_solomon} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/linearized_reed_solomon

Cite as:

“Linearized RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/linearized_reed_solomon

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/matrices/sum-rank-metric/linearized_reed_solomon.yml.