Here is a list of codes related to quantum locally testable codes.
Code | Description |
---|---|
Dinur-Lin-Vidick (DLV) code | Member of a family of quantum locally testable codes constructed using cubical chain complexes, which are \(t\)-order extensions of the complexes underlying expander codes (\(t=1\)) and expander lifted-product codes (\(t=2\)). |
Distance-balanced code | Galois-qudit CSS code constructed from a CSS code and a classical code using a distance-balancing procedure based on a generalized homological product. The initial code is said to be unbalanced, i.e., tailored to noise biased toward either bit- or phase-flip errors, and the procedure can result in a code that is treats both types of errors on a more equal footing. The original distance-balancing procedure [1], later generalized [2; Thm. 4.2], can yield QLDPC codes [1; Thm. 1]. |
Hemicubic code | Homological code constructed out of cubes in high dimensions. The hemicubic code family has asymptotically diminishing soundness that scales as order \(\Omega(1/\log n)\), locality of stabilizer generators scaling as order \(O(\log n)\), and distance of order \(\Theta(\sqrt{n})\). |
Hypersphere product code | Homological code based on products of hyperspheres. The hypersphere product code family has asymptotically diminishing soundness that scales as order \(O(1/\log (n)^2)\), locality of stabilizer generators scaling as order \(O(\log n/ \log\log n)\), and distance of order \(\Theta(\sqrt{n})\). |
Locally testable code (LTC) | Code for which one can efficiently check whether a given string is a codeword or is far from a codeword. Efficiency of the verification is quantified by the code's query complexity \(u\), while effectiveness is quantified by the code's soundness \(R\). |
Quantum LDPC (QLDPC) code | Member of a family of \([[n,k,d]]\) stabilizer codes for which the number of sites participating in each stabilizer generator and the number of stabilizer generators that each site participates in are both bounded by a constant \(w\) as \(n\to\infty\); can be denoted by \([[n,k,d,w]]\). Sometimes, the two parameters are explicitly stated: each site of an an \((l,w)\)-regular QLDPC code is acted on by \(\leq l\) generators of weight \(\leq w\). QLDPC codes can correct many stochastic errors far beyond the distance, which may not scale as favorably. Together with more accurate, faster, and easier-to-parallelize measurements than those of general stabilizer codes, this property makes QLDPC codes interesting in practice. |
Quantum check-product code | CSS code constructed from an extension of check product (between two classical codes) to a product between a classical and a quantum code. |
Quantum locally testable code (QLTC) | A local commuting-projector Hamiltonian-based block quantum code which has a nonzero average-energy penalty for creating large errors. Informally, QLTC error states that are far away from the codespace have to be excited states by a number of the code's local projectors that scales linearly with \(n\). |
Qubit CSS code | An \([[n,k,d]]\) stabilizer code admitting a set of stabilizer generators that are either \(Z\)-type or \(X\)-type Pauli strings. Codes can be defined from two classical codes and/or chain complexes over \(\mathbb{Z}_2\) per the qubit CSS-to-homology correspondence below. |
Self-correcting quantum code | A block quantum code that forms the ground-state subspace of an \(n\)-body geometrically local Hamiltonian whose logical information is recoverable for arbitrary long times in the \(n\to\infty\) limit after interaction with a sufficiently cold thermal environment. Typically, one also requires a decoder whose decoding time scales polynomially with \(n\) and a finite energy density. The original criteria for a self-correcting quantum memory, informally known as the Caltech rules [3,4], also required finite-spin Hamiltonians. |
References
- [1]
- M. B. Hastings, “Weight Reduction for Quantum Codes”, (2016) arXiv:1611.03790
- [2]
- S. Evra, T. Kaufman, and G. Zémor, “Decodable quantum LDPC codes beyond the \(\sqrt{n}\) distance barrier using high dimensional expanders”, (2020) arXiv:2004.07935
- [3]
- C. G. Brell, “A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less)”, New Journal of Physics 18, 013050 (2016) arXiv:1411.7046 DOI
- [4]
- O. Landon-Cardinal, B. Yoshida, D. Poulin, and J. Preskill, “Perturbative instability of quantum memory based on effective long-range interactions”, Physical Review A 91, (2015) arXiv:1501.04112 DOI