[Jump to code hierarchy]

Varshamov-Tenengolts (VT) code[1,2]

Description

Nearly optimal binary deletion-correcting code and code for the asymmetric channel.

Given integers \(n\geq 1\) and \(a\in\{0,1,\dots,n\}\), the associated Varshamov-Tenengolts code \(C_{n,a}\) corresponds to the set \begin{align} C_{n,a}=\left\{x\in\{0,1\}^n: \sum_{i=1}^n i~x_i = a\mod (n+1) \right\}. \tag*{(1)}\end{align}

By adapting a construction of Tenengolts [3], VT codes can be modified to yield slightly longer linear codes [4]. VT codes can be generalized to the \(q\)-ary case [57].

Protection

Corrects a single asymmetric error (a \(0\) mapped to a \(1\)), a single deletion, or a single insertion of an arbitrary bit in an arbitrary position for any choice of \(a\).

Rate

Rate-\(1\) code, with \(\log n+1\) bits of redundancy when \(a=0\). Nearly optimal.

Decoding

Decoder based on checksums \(\sum_{i=1}^n i~x_i^{\prime}\) of corrupted codewords \(x_i^{\prime}\) [2,8].

Primary Hierarchy

Parents
CR codes for \(G=\mathbb{Z}_{n+1}\) reduce to VT codes.
Varshamov-Tenengolts (VT) code

References

[1]
R. R. Varshamov and G. M. Tenengolts, Codes which correct single asymmetric errors (translated to English), Autom. Remote Control, 26(2), 286-290 (1965)
[2]
V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals (translated to English), Soviet Physics Dokl., 10(8), 707-710 (1966).
[3]
G. M. Tenengolts, Class of codes correcting bit loss and errors in the preceding bit (translated to English), Automation and Remote Control, 37(5), 797–802 (1976).
[4]
N. J. A. Sloane, “On Single-Deletion-Correcting Codes”, (2002) arXiv:math/0207197
[5]
M. Abroshan, R. Venkataramanan, and A. G. i Fabregas, “Efficient Systematic Encoding of Non-binary VT Codes”, (2018) arXiv:1708.04071
[6]
G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (Corresp.)”, IEEE Transactions on Information Theory 30, 766 (1984) DOI
[7]
K. Tatwawadi and S. Chandak, “Tutorial on algebraic deletion correction codes”, (2019) arXiv:1906.07887
[8]
V. I. Levenshtein, Binary codes capable of correcting spurious insertions and deletions of one (translated to English), Prob. Inf. Transmission, 1(1), 8-17 (1965).
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: vt_single_deletion

Cite as:
“Varshamov-Tenengolts (VT) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/vt_single_deletion
BibTeX:
@incollection{eczoo_vt_single_deletion, title={Varshamov-Tenengolts (VT) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/vt_single_deletion} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/vt_single_deletion

Cite as:

“Varshamov-Tenengolts (VT) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/vt_single_deletion

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/nonlinear/vt_single_deletion.yml.