[Jump to code hierarchy]

Quasi-perfect code

Description

Perfect codes \((n,K,d)_q\) are those for which balls of Hamming radius \(t=\left\lfloor (d-1)/2\right\rfloor\) exactly fill the space of all \(n\) \(q\)-ary strings. Quasi-perfect codes are those for which balls of Hamming radius \(t\) are disjoint, while balls of radius \(t+1\) cover the space with possible overlaps. In other words, any \(q\)-ary string is at most \(t+1\) bit flips away from a codeword of a quasi-perfect code.

Protection

Correct errors of weight \(t\) as well as some errors of weight \(t+1\).

Cousins

Member of code lists

Primary Hierarchy

Parents
Quasi-perfect codes are uniformly packed [4; Def. 2.5].
A quasi-perfect code is an \(m\)-weighted covering code for \(r=t+1\), \(m_0=m_1=\cdots=m_{t+1}=1\), and \(m_t=m_{t+1}=1/\left\lfloor (n+1)(t+1) \right\rfloor\) ([5], Ch. 13).
Quasi-perfect code
Children
Nearly perfect codes are quasi-perfect [3; pg. 533].
Zetterberg codes are quasi-perfect, with each \(n\)-bit string at most three bit-flips away from a codeword [6].

References

[1]
D. Gorenstein, W. W. Peterson, and N. Zierler, “Two-error correcting Bose-Chaudhuri codes are quasi-perfect”, Information and Control 3, 291 (1960) DOI
[2]
T. Helleseth, “No primitive binary<tex>t</tex>-error-correcting BCH code with<tex>t > 2</tex>is quasi-perfect (Corresp.)”, IEEE Transactions on Information Theory 25, 361 (1979) DOI
[3]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[4]
J. Borges, J. Rifà, and V. A. Zinoviev, “On Completely Regular Codes”, (2017) arXiv:1703.08684
[5]
G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering codes. Elsevier, 1997.
[6]
S. M. Dodunekov and J. E. M. Nilsson, “Algebraic decoding of the Zetterberg codes”, IEEE Transactions on Information Theory 38, 1570 (1992) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quasi_perfect

Cite as:
“Quasi-perfect code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quasi_perfect
BibTeX:
@incollection{eczoo_quasi_perfect, title={Quasi-perfect code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quasi_perfect} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quasi_perfect

Cite as:

“Quasi-perfect code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quasi_perfect

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/packing/quasi_perfect.yml.