Low-rank parity-check (LRPC) code[1] 

Description

An LRPC code of rank \(d\) is a rank-metric code that, when interpreted as a linear code over \(GF(q^m)\), admits an \((n-k)\times n\) parity-check matrix whose entries span a subspace of \(GF(q^m)\) that is at most \(d\)-dimensional.

Decoding

Efficient probabilistic decoder [1].Mixed decoder [2].

Realizations

Cryptosystem [1] that is a rank-metric analogue of NTRU [3] and MDPC [4] cryptosystems.Post-quantum cryptography [2].

Parent

Cousin

References

[1]
Gaborit, P., Murat, G., Ruatta, O., & Zemor, G. (2013, April). Low rank parity check codes and their application to cryptography. In Proceedings of the Workshop on Coding and Cryptography WCC (Vol. 2013).
[2]
P. Gaborit et al., “RankSign: An Efficient Signature Algorithm Based on the Rank Metric”, Post-Quantum Cryptography 88 (2014) DOI
[3]
J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem”, Lecture Notes in Computer Science 267 (1998) DOI
[4]
R. Misoczki et al., “MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes”, 2013 IEEE International Symposium on Information Theory (2013) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: lrpc

Cite as:
“Low-rank parity-check (LRPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/lrpc
BibTeX:
@incollection{eczoo_lrpc, title={Low-rank parity-check (LRPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/lrpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/lrpc

Cite as:

“Low-rank parity-check (LRPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/lrpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/matrices/rank-metric/lrpc.yml.