Low-rank parity-check (LRPC) code[1]
Description
An LRPC code of rank \(d\) is a rank-metric code that, when interpreted as a linear code over \(GF(q^m)\), admits an \((n-k)\times n\) parity-check matrix whose entries span a subspace of \(GF(q^m)\) that is at most \(d\)-dimensional.
Decoding
Realizations
Cryptosystem [1] that is a rank-metric analogue of NTRU [3] and MDPC [4] cryptosystems.Post-quantum cryptography [2].
Parent
Cousin
- Low-density parity-check (LDPC) code — LRPC codes are rank-metric analogues of LDPC codes [1].
References
- [1]
- Gaborit, P., Murat, G., Ruatta, O., & Zemor, G. (2013, April). Low rank parity check codes and their application to cryptography. In Proceedings of the Workshop on Coding and Cryptography WCC (Vol. 2013).
- [2]
- P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor, “RankSign: An Efficient Signature Algorithm Based on the Rank Metric”, Post-Quantum Cryptography 88 (2014) DOI
- [3]
- J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem”, Lecture Notes in Computer Science 267 (1998) DOI
- [4]
- R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes”, 2013 IEEE International Symposium on Information Theory (2013) DOI
Page edit log
- Mazin Karjikar (2023-01-16) — most recent
- Victor V. Albert (2023-01-16)
Cite as:
“Low-rank parity-check (LRPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/lrpc