Kopparty-Meir-Ron-Zewi-Saraf (KMRS) code[1,2] 

Description

Member of a family of locally testable binary linear codes with constant rate, constant relative distance, and subpolynomial query complexity \(u = (\log n)^{O(\log \log n)}\)). Later work by Gopi, Kopparty, Oliveira, Ron-Zewi, and Saraf [2] showed that related concatenated codes achieve the GV bound.

Parent

References

[1]
S. Kopparty et al., “High-Rate Locally Correctable and Locally Testable Codes with Sub-Polynomial Query Complexity”, Journal of the ACM 64, 1 (2017) DOI
[2]
S. Gopi et al., “Locally Testable and Locally Correctable Codes approaching the Gilbert-Varshamov Bound”, IEEE Transactions on Information Theory 64, 5813 (2018) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: kmrs-ltc

Cite as:
“Kopparty-Meir-Ron-Zewi-Saraf (KMRS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/kmrs-ltc
BibTeX:
@incollection{eczoo_kmrs-ltc, title={Kopparty-Meir-Ron-Zewi-Saraf (KMRS) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/kmrs-ltc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/kmrs-ltc

Cite as:

“Kopparty-Meir-Ron-Zewi-Saraf (KMRS) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/kmrs-ltc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/ltc/kmrs-ltc.yml.