Coxeter code[1]
Description
A member of a family of codes that generalizes RM codes in a group-theoretic sense.
A binary RM\((r,m)\) code is spanned by indicators of all subcubes of dimension \(m-r\) in the \(m\)-dimensional cube (this is a redundant generating set [2]), i.e., by the cosets of rank-\((m-r)\) subgroups of \(\mathbb{Z}_2^m\). For a finite Coxeter group \(W\) with \(m\) generators, a binary linear code \(C_W(r)\) of order \(r\) with \(-1 \leq r \leq m\) is similarly spanned by indicators of all the cosets of rank-\((m-r)\) parabolic subgroups of \(W\).
The dimension \(dim(C_W(r))=\sum_{i=0}^r \left\langle \begin{smallmatrix}W\\ i \end{smallmatrix}\right\rangle \), where \(\left\langle \begin{smallmatrix}W\\ i \end{smallmatrix}\right\rangle \) is the \(W\)-Eulerian number, i.e., the count of elements in \(W\) with descent number equal to \(i\).
Protection
The family of Coxeter codes is closed under duality, \((C_W(r))^{\perp}=C_W(m-r-1)\). For \(q < r\), \(C_W(q) \subsetneq C_W(r)\). The distance \(d(C_W(r)) \geq 2^{m-r}\).Cousin
- Qubit CSS code— Coxeter codes can be used to make qubit CSS codes [1].
Member of code lists
Primary Hierarchy
References
- [1]
- N. J. Coble and A. Barg, “Coxeter codes: Extending the Reed-Muller family”, (2025) arXiv:2502.14746
- [2]
- A. Barg, N. J. Coble, D. Hangleiter, and C. Kang, “Geometric structure and transversal logic of quantum Reed-Muller codes”, (2024) arXiv:2410.07595
Page edit log
- Victor V. Albert (2025-06-20) — most recent
- Alexander Barg (2025-06-20)
Cite as:
“Coxeter code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/coxeter