Description
Spherical \((3,14,2-2/\sqrt{3})\) code whose codewords are the vertices of the rhombic dodecahedron.Protection
Optimal antipodal configuration of 14 points in 3D space [1].Cousins
- Dual polytope code— The rhombic dodecahedron and cuboctahedron are dual to each other [2].
- Cubeoctahedron code— The rhombic dodecahedron and cuboctahedron are dual to each other [2].
- \([[14,3,3]]\) Rhombic dodecahedron surface code— The qubits of the \([[14,3,3]]\) rhombic dodecahedron surface code lie on the vertices of the small rhombic dodecahedron.
Member of code lists
Primary Hierarchy
References
- [1]
- J. H. Conway, R. H. Hardin, and N. J. A. Sloane, “Packing Lines, Planes, etc.: Packings in Grassmannian Space”, (2002) arXiv:math/0208004
- [2]
- A. Holden, “Shapes, Space, and Symmetry”, (1971) DOI
Page edit log
- Victor V. Albert (2025-07-16) — most recent
Cite as:
“Rhombic dodecahedron code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/rhombic_dodecahedron