[Jump to code hierarchy]

Goethals code[1]

Description

Member of a family of \((2^m,2^{2^m-3m+1},8)\) binary nonlinear codes for \(m \geq 6\) that generalizes the Preparata codes. The code can be constructed as disjoint union of cosets of a certain linear code [2; Ch. 15].

Rate

The rate is \({2^m -3m +1}/2^m\), going to 1 as block length goes to infinity.

Cousins

  • Delsarte-Goethals (DG) code— Hergert codes for a given \(m\) are duals of DG\((m,1/2(m-2))\) codes in that their distance distribution is equal to the MacWilliams transform of the distance distribution of the DG codes [3]. However, the two codes are images of a pair of mutually dual linear codes over \(\mathbb{Z}_4\) under the Gray map [4,5].
  • \(((2^m,2^{2^m−5m+1},8))\) Goethals-Preparata code— The \(((2^m,2^{2^m−5m+1},8))\) Goethals-Preparata code is constructed using the classical Goethals and Preparata codes [6,7]. A construction using the \(\mathbb{Z}_4\) versions of the Goethals and Preparata codes and the Gray map yields qubit code families with similar parameters [8].

Primary Hierarchy

Parents
Goethals codes are equivalent to Hergert codes for \(r=3\) [9; Thm. 2].
Goethals code

References

[1]
J. M. Goethals, “Two dual families of nonlinear binary codes”, Electronics Letters 10, 471 (1974) DOI
[2]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[3]
F. B. Hergert, “On the delsarte-goethals codes and their formal duals”, Discrete Mathematics 83, 249 (1990) DOI
[4]
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory 40, 301 (1994) DOI
[5]
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The Z_4-Linearity of Kerdock, Preparata, Goethals and Related Codes”, (2002) arXiv:math/0207208
[6]
M. Grassl and M. Rotteler, “Non-additive quantum codes from Goethals and Preparata codes”, 2008 IEEE Information Theory Workshop (2008) arXiv:0801.2144 DOI
[7]
M. Grassl and M. Rotteler, “Quantum Goethals-Preparata codes”, 2008 IEEE International Symposium on Information Theory (2008) arXiv:0801.2150 DOI
[8]
S. Ling and P. Sole. 2008. Nonadditive quantum codes from Z4-codes. https://hal.archives-ouvertes.fr/hal-00338309/fr/.
[9]
P. Delsarte and J. M. Goethals, “Alternating bilinear forms over GF(q)”, Journal of Combinatorial Theory, Series A 19, 26 (1975) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: goethals

Cite as:
“Goethals code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/goethals
BibTeX:
@incollection{eczoo_goethals, title={Goethals code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/goethals} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/goethals

Cite as:

“Goethals code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/goethals

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/nonlinear/gray_map/duals/goethals.yml.