Root code for the Qubit Kingdom
Description
Qubit code designed to utilize pre-shared entanglement between sender and receiver.
Protection
The quantum GV bound and Plotkin bound have been extended to EA qubit codes [1].
Rate
There are EA versions of classical and quantum capacities [2], and the ratio of the entanglement-assisted and unassisted classical capacities of a channel is bounded by a function of the input channel's dimension [3]. EA hashing bounds on the minimum entanglement required to achieve the entanglement-assisted channel capacity are derived [4].
Encoding
Encoding algorithm [5].
Decoding
Decoding algorithm [5].
Parent
- EA Galois-qudit code — EA Galois-qudit codes reduce to EA qubit codes for \(q=2\).
Child
Cousins
- Qubit code — EA qubit codes utilize additional ancillary qubits in a pre-shared entangled state, but reduce to ordinary qubit codes when said qubits are interpreted as noiseless physical qubits.
- Codeword stabilized (CWS) code — EA CWS codes have been formulated [6].
References
- [1]
- C.-Y. Lai, T. A. Brun, and M. M. Wilde, “Dualities and identities for entanglement-assisted quantum codes”, Quantum Information Processing 13, 957 (2013) arXiv:1010.5506 DOI
- [2]
- C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-Assisted Classical Capacity of Noisy Quantum Channels”, Physical Review Letters 83, 3081 (1999) arXiv:quant-ph/9904023 DOI
- [3]
- L. H. Wolff, P. Belzig, M. Christandl, B. Durhuus, and M. Tomamichel, “A Limit on the Power of Entanglement-Assistance in Quantum Communication”, (2024) arXiv:2408.17290
- [4]
- G. Bowen, “Entanglement required in achieving entanglement-assisted channel capacities”, Physical Review A 66, (2002) arXiv:quant-ph/0205117 DOI
- [5]
- M. M. Wilde, “Quantum Coding with Entanglement”, (2008) arXiv:0806.4214
- [6]
- J. Shin, J. Heo, and T. A. Brun, “Entanglement-assisted codeword stabilized quantum codes”, Physical Review A 84, (2011) arXiv:1109.3358 DOI
Page edit log
- Victor V. Albert (2023-10-31) — most recent
Cite as:
“EA qubit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ea_qubits_into_qubits