[Jump to code hierarchy]

Dodecacode[1]

Description

The unique trace-Hermitian self-dual additive \((12,4^6,6)_4\) code. Its codewords are cyclic permutations of \((\omega 10100100101)\), where \(GF(4)=\{0,1,\omega,\bar{\omega}\}\) is the quaternary Galois field [2; Sec. 2.4.8]. Another generator matrix can be found in [3; Exam. 9.10.8].

The dodecacode is a self-dual additive code, and there is no self-dual linear code with the same parameters [4].

Puncturing the code yields the \((11,4^6,5)_4\) additive code known as the punctured or shortened dodecacode [5].

Cousins

  • Combinatorial design— There exists a \(5\)-\((12, 6, 3)\) design in the dodecacode, and a \(3\)-\((11, 5, 4)\) design in the shortened dodecacode [6].
  • \([[11,1,5]]\) quantum dodecacode— The dodecacode corresponds to a \([[12,0,6]]\) quantum code in the \(GF(4)\) representation [1]. The \([[11,1,5]]\) quantum dodecacode code corresponds to the shortened dodecacode [7]. A pure \([[10,1,4]]\) quantum code can be obtained from the doubly punctured dodecacode [7]. These codes are not obtained from the Hermitian construction since none of the classical codes are linear.
  • Uniformly packed code— The punctured dodecacode code is uniformly packed [8].

References

[1]
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
[2]
Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
[3]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[4]
L. E. Danielsen and M. G. Parker, “On the classification of all self-dual additive codes over GF(4) of length up to 12”, Journal of Combinatorial Theory, Series A 113, 1351 (2006) arXiv:math/0504522 DOI
[5]
D. Krotov and P. Sole, “The punctured Dodecacode is uniformly packed”, 2019 IEEE International Symposium on Information Theory (ISIT) 1912 (2019) DOI
[6]
J. Kim and V. Pless, Designs, Codes and Cryptography 30, 187 (2003) DOI
[7]
A. J. Scott, “Probabilities of Failure for Quantum Error Correction”, Quantum Information Processing 4, 399 (2005) DOI
[8]
D. Krotov and P. Sole, “The punctured Dodecacode is uniformly packed”, 2019 IEEE International Symposium on Information Theory (ISIT) 1912 (2019) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: dodecacode

Cite as:
“Dodecacode”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/dodecacode
BibTeX:
@incollection{eczoo_dodecacode, title={Dodecacode}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/dodecacode} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/dodecacode

Cite as:

“Dodecacode”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/dodecacode

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/dodecacode.yml.