Diagonal code[1] 

Description

Member of an explicit family of high-rate \([n,k,d,\alpha, \beta = \frac{\alpha}{d-k+1}, M=k\alpha]\) MSR codes for any \(r\) and \(n\). Such codes can optimally repair any \(f\) failed nodes from any \(d\) helper nodes for all \(d\), \(1 \le f \le r\) and \(k \le d \le n-f\) simultaneously. These codes can be constructed over any base field \(GF(q)\) as long as \(|GF(q)| \ge sn\), where \(s = \text{lcm}(1,2,\cdots,r)\).

Let \(C \in GF(q)^{\alpha \times n}\) be a codeword, with \(C_i\) being the \(i\)-th coordinate. Then, the code is defined as \begin{equation} \mathsf{C} = \{(C_1,C_2,\cdots,C_n) \sum_{i=1}^nA_i^{t-1}C_i = 0, t=1,2,\cdots,r\}~, \tag*{(1)}\end{equation} where the matrices \(A_i\) are diagonal \(\alpha \times \alpha\) matrices.

Parent

References

[1]
M. Ye and A. Barg, “Explicit constructions of MDS array codes and RS codes with optimal repair bandwidth”, 2016 IEEE International Symposium on Information Theory (ISIT) (2016) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: diagonal

Cite as:
“Diagonal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/diagonal
BibTeX:
@incollection{eczoo_diagonal, title={Diagonal code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/diagonal} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/diagonal

Cite as:

“Diagonal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/diagonal

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/matrices/regenerating/diagonal.yml.