Description
A poset code based on a partial ordering of \([n]\), i.e., \(1\leq 2\leq \cdots \leq n\).Cousin
- Orthogonal array (OA)— There exist orthogonal arrays in ordered Hamming space [5,7].
Member of code lists
Primary Hierarchy
Parents
Niederreiter-Rosenbloom-Tsfasman (NRT) code
Children
References
- [1]
- H. Niederreiter, “Point sets and sequences with small discrepancy”, Monatshefte für Mathematik 104, 273 (1987) DOI
- [2]
- H. Niederreiter, “A combinatorial problem for vector spaces over finite fields”, Discrete Mathematics 96, 221 (1991) DOI
- [3]
- H. Niederreiter, “Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes”, Discrete Mathematics 106–107, 361 (1992) DOI
- [4]
- M. Yu. Rosenbloom, M. A. Tsfasman, “Codes for the m-Metric”, Probl. Peredachi Inf., 33:1 (1997), 55–63; Problems Inform. Transmission, 33:1 (1997), 45–52
- [5]
- A. Barg and P. Purkayastha, “Bounds on ordered codes and orthogonal arrays”, (2009) arXiv:cs/0702033
- [6]
- J. Bierbrauer, “A direct approach to linear programming bounds for codes and tms-nets”, Designs, Codes and Cryptography 42, 127 (2006) DOI
- [7]
- W. J. Martin and D. R. Stinson, “Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-Nets”, Canadian Journal of Mathematics 51, 326 (1999) DOI
Page edit log
- Victor V. Albert (2024-09-11) — most recent
Cite as:
“Niederreiter-Rosenbloom-Tsfasman (NRT) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/nrt