\(\mathbb{Z}_4^{(1)}\) subsystem code[1]

Description

Modular-qudit \(q=4\) subsystem stabilizer code realizing abelian \(\mathbb{Z}_4^{(1)}\) topological order [2]. Its anyonic exchange statistics resemble those of the double semion code, but its fusion rules realize the \(\mathbb{Z}_4\) group.

Parents

References

[1]
T. D. Ellison et al., “Pauli topological subsystem codes from Abelian anyon theories”, (2022) arXiv:2211.03798
[2]
P. H. Bonderson, Non-Abelian Anyons and Interferometry, California Institute of Technology, 2007 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: qudit_z4one

Cite as:
\(\mathbb{Z}_4^{(1)}\) subsystem code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qudit_z4one
BibTeX:
@incollection{eczoo_qudit_z4one, title={\(\mathbb{Z}_4^{(1)}\) subsystem code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_z4one} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_z4one

Cite as:

\(\mathbb{Z}_4^{(1)}\) subsystem code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/qudit_z4one

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/qudits/subsystem/qudit_z4one.yml.